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Echolocation calls of the bats of Trinidad, West Indies: is guild membership reflected
in echolocation signal design?
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Time-expanded echolocation calls were recorded from 29 species of Neotropical bats in lowland moist tropical forest in Trinidad,
West Indies with three aims: (1) to describe the echolocation calls of the members of a diverse Neotropical bat community, especially
members of the family Phyllostomidae, whose calls are not well documented (2) to investigate whether multivariate analysis of calls
allows species and foraging guilds to be identified and (3) to evaluate the use of bat detectors in surveying the phyllostomids of
Neotropical forests. The calls of 12 species of the family Phyllostomidae are described here for the first time and a total of 29 species,
belonging to five families (Emballonuridae, Mormoopidae, Phyllostomidae, Molossidae and Vespertilionidae) were recorded.
Quadratic discriminant function analysis (DFA) was used to obtain classification rates for each one of 11 individual species and for
six guilds (based on diet, foraging mode and habitat) comprising 26 species. Overall classification rates were low compared to
similar studies conducted in the Palaeotropics. We suggest that this may be due to a combination of ecological plasticity for certain
species and a loose relationship between echolocation call shape, fine-grained resource partitioning and resource acquisition in

phyllostomids.
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INTRODUCTION

Echolocation in bats is characterised by variation
in call intensity, frequency, shape, and patterns of
pulse emission (Fenton et al., 1998). These differ-
ences are sufficiently large in some bat species to fa-
cilitate species identification among sympatric
species (Rydell er al., 2002). Recently more and
more studies of bat echolocation are attempting to
assess how accurately species in different bat com-
munities can be identified by their echolocation calls
(MacDonald et al., 1994; Fenton et al., 2001; Prea-
toni et al., 2005; Murray et al., 2009). This is linked
to the wider question of whether bat detectors pro-
vide a reliable means of sampling a bat community
without capturing individuals, or whether they can
be used as an adjunct method to inventory the com-
munity more completely (Fenton and Griffin, 1997;
Vaughan et al., 1997; Ahlen and Baagee, 1999;
Barclay, 1999; Rydell et al., 2002). Capturing bats
can be difficult, time consuming and relatively cost-
ly in terms of manpower. Moreover, many bat spe-
cies in tropical forests are undersampled by mist

nets and harp traps as they rely almost exclusively
on echolocation for orientation in space and when
foraging are able to avoid nets and traps (Kalko,
1998; Simmons and Voss, 1998).

Echolocation studies are also used to investigate
resource partitioning and guild assemblies (Schnitz-
ler and Kalko, 1998; Siemers and Schnitzler, 2004),
as echolocation call characteristics reflect habitat
and dietary partitioning (Aldridge and Rautenbach,
1987; Jones et al., 1992; Vaughan et al., 1997; Fen-
ton and Ratcliffe, 2004). Bats can be divided into
guilds according to their wing morphology, prefer-
red habitat, diet and foraging behaviour, which are
thought to coincide with distinct adaptations in sig-
nal structure (Schnitzler and Kalko, 1998). Although
coarse partitioning of niche space is generally ac-
cepted, it is not clear how niches differ within guilds,
or whether fine-grained niche differentiation is re-
flected in echolocation signal structure (Siemers and
Schnitzler, 2004).

Bat assemblages in the forests of the Old World are
typically characterised by many species with strong
and distinct calls of high intensity. In the families
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Hipposideridae, Rhinolophidac and Myzopodidae,
bats echolocate at a specific frequency making
species identification relatively straightforward.
Thus bat detectors are useful tools in Rapid Bio-
diversity Assessments in the Palaeotropics (RBAs)
(Russ et al., 2003). Within the same genus, species
can be distinguished by variations in emitted call
frequency (Barclay, 1999), which can be related to
age, body size and sex (Neuweiler et al., 1987; Jones
and Rayner, 1989; Jones et al., 1992; Russo et al.,
2001).

Our knowledge of Neotropical bat echolocation
is largely confined to aerial insectivores (e.g.,
Molossidae) or insectivores specialised in feeding at
forest edges or in gaps in forest cover (Saccopteryx
bilineata, S. leptura, Rhogeessa io — O’Farrell and
Miller, 1997; Kalko, 1995; Rydell et al., 2002) as
these groups produce strong signals, which are rela-
tively easy to record using bat detectors. However,
the Phyllostomidae, the most speciose and ecologi-
cally diverse family of New World bats, have sel-
dom been the subject of detailed echolocation stud-
ies (Murray et al., 2009). Members of this family
generally produce low intensity calls and are
thought to be difficult to detect with bat detectors.
Many phyllostomids are found in highly cluttered
habitats, making visual observations and identifica-
tion problematic. Many are gleaners, taking their
food from surfaces and using several different meth-
ods to detect food, including vision, prey-generated
sound, olfaction and echolocation (Grant, 1991;
Kalko and Condon, 1998; Thies et al., 1998). While
evidence for resource partitioning in the Phyllosto-
midae is abundant, it is based mostly on differences
in diet, habitat preference and flight morphology
(Giannini and Kalko, 2004; Weinbeer and Kalko,
2004), and not on echoocation signal characteristics.

Jennings et al. (2004) described the echolocation
calls of nine species of phyllostomid bats from the
Caribbean, although no attempt was made to inves-
tigate whether echolocation design reflects fine-
scale partitioning. As part of a large bat community
study in the Victoria-Mayaro Forest Reserve
(VMFR), Trinidad, West Indies, bats were sampled
with harp traps and mist nets set at ground level and
with mist nets set in the canopy, allowing bats to be
identified to species level and their echolocation calls
recorded on release (Clarke et al., 2005a, 2005b). By
means of a time-expansion detector, echolocation
calls were recorded from an ecologically diverse
community of Neotropical bats within the VMFR.

We aimed: (1) To describe the echolocation
calls of a Neotropical bat community, especially the

members of the family Phyllostomidae; (2) To in-
vestigate whether multivariate analysis of ‘hand re-
lease’ calls allows species and foraging guilds to be
identified; (3) To assess the use of bat detectors as
a tool to survey phyllostomid bat communities.

MATERIALS AND METHODS

Study site

All sound recordings were made within the VMFR, in the
southern-eastern part of Trinidad (10°04’-10°18’N, 61°01°—
61°18’W). The reserve covers an area of approximately 52,000
ha of lowland tropical moist forest, in which the canopy is dom-
inated byMora excelsa. The next most dominant canopy spe-
cies are Carapa guianensis, Terminalia dichotoma, Pterocarpus
rohrii and Spondias mombin.

Capture methods

Mist nets of 2.6 x 6 m were employed at ground level at
each sampling site. Nets were positioned to sample all micro-
habitats at the sites: ridge tops, valley bottoms and streams, flat
well-drained ground, swampy areas, under closed canopy, or in
tree-fall gaps. One 3 X 12 m mist net was set in the forest sub-
canopy at four sampling points. All nets were 50-denier weight,
2-ply nylon, with a 38-mm mesh size (Avinet, Dryden, New
York, USA) and were deployed between 5 pm and midnight.
A two-frame harp trap, with a catching surface of 4.2 m?, was
erected at each sampling point (AUSTBAT Research Equip-
ment, Victoria, Australia). A complete list of all captured spe-
cies, as well as a detailed description of capture rates is pub-
lished in Clarke et al. (20054, 20055).

Recording conditions and equipment

Bats were recorded when released from the hand after cap-
ture and identification (Parsons and Jones 2000, Fukui et al.,
2004). Bat taxonomy follows Simmons (2005). All bats were re-
leased 5 m from the detector on forest trails. For some species
recordings were made inside a custom made flight chamber
(3x3x3m), made from nylon mosquito netting. Recordings ob-
tained in this way were not used in the analysis presented here,
but some sonograms of calls recorded in the flight chamber are
represented in Fig 1. Ultrasound was converted to audible sig-
nals via a time expansion bat detector (D-980, Petersson Ele-
ktronik AB, Uppsala, Sweden). The detector digitally stores
three seconds of ‘real’ time, and slows it down by a factor of ten.
Time expanded ultrasound was stored on metal tapes (type IV)
via a WM-D6C Sony Professional Walkman (Sony Coopera-
tion, Tokyo, Japan).

Measurements of call parameters

Echolocation calls were analysed using the software pack-
age BatSoundPro, Ver. 3.0 (Pettersson Elektronik AB, Uppsala,
Sweden). Only one call per bat was measured except for Rhyn-
chonycteris naso where two calls per bat (one for a higher call
and one for a lower call) were measured, though in the analysis
only the lower call was used as a larger sample size for this
call was available. For Saccopteryx bilineata and S. leptura,
the alternating pulse often reported by other authors (Jung et
al., 2007) was observed only occasionally, therefore a formal
distinction between higher and lower pulse was not made.
Typically the middle call of each call sequence was selected in
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FIG. 1. Sonograms of one echolocation call for each of 29 bat species recorded from hand released bats (unless otherwise stated): 21
phyllostomids: A.ci. — Artibeus cinereus, A.ja — Artibeus jamaicensis, A.li — Artibeus lituratus, C.pe — Carollia perspicillata,

C.se — Centurio senex (in flight chamber), C.tr — Chiroderma trinitatum, C.vi — Chiroderma villosum, C.mi — Choeriniscus
minor, G.so — Glossophaga soricina, S.ti — Sturnira tildae, U.bi — Uroderma bilobatum, P.he — Platyrrhinus helleri, Pha —
Phyllostomus hastatus, T.sa — Tonatia saurophila, D.ro — Desmodus rotundus, V.sp — Vampyrum spectrum, L.br —

Lampronycteris brachyotis (in flight chamber), M.hi — Micronycteris hirsuta, M.mi — Micronycteris minuta (in flight chamber),
T.ni — Trinycteris nicefori, M.cr — Mimon crenulatum (in flight chamber); three vespertilionids: My.ni — Myotis nigricans (in flight
chamber), E.br — Eptesicus brasiliensis, R.io — Rhogeessa io; three emballonurids: n R.na — Rhynchonycteris naso (two calls
shown to illustrate variation in harmonic usage), S./e — Saccopteryx leptura (high and low call shown), S.bi — Saccopteryx bilineata

(highand low call shown); one mormoopid: Ppa — Pteronotus parnellii and one molossid: M.mo — Molossus molossus
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an effort to exclude both shorter ‘take-off” calls at the start of
a sequence and very attenuated calls at the end of a sequence.
Care was taken to avoid calls that showed signs of interference,
background noise or overloading. Most calls analysed here
comprised of two or more harmonics. The harmonic containing
the most energy was usually diagnostic for the species, though
occasionally the switching of energy from one harmonic to an-
other was observed for some species. For each call the harmon-
ic containing most energy was identified from the power spec-
trum and measurements were taken from it. The following call
characteristics were measured from the sonogram and power
spectrum: Frequency containing maximum energy (or peak fre-
quency, FMAXE), minimum frequency (FMIN), maximum fre-
quency (FMAX), duration of the call (DUR) and time between
calls (TBC). DUR and TBC (ms) were measured from oscillo-
grams, FMAXE (kHz) from power spectra, and all other spec-
tral parameters (kHz) from spectrograms.

Data analysis

Quadratic multivariate discriminant analysis (quadratic
DFA) has recently been shown to give an objective measure of
confidence in species indetification and to correctly classify
more cases than other methods (Jones ef al., 2000; Preatoni et
al., 2005). DFA was applied with cross validation to call param-
eters of 11 species, as sample sizes for the remaining 18 were
insufficient for statistical analysis. In the species classification
quadratic DFA, FMAXE was the only normally distributed pa-
rameter. All other parameters were subjected to logarithmic
transformations, but only TBC was normalised. To illustrate the
effect of reduced sample sizes on quadratic DFA outcome, sam-
ple sizes of five phyllostomids were reduced to match the re-
maining six species. In this case all but FMAX were either nor-
mal or became so following logarithmic transformations. In
guild classifications only TBC and FMAXE resulted in normal
distributions following logarithmic transformations. However,
DFA is robust to the violation of this assumption.

Correlation analysis was used to explore the strength of the
relationship between echolocation parameters. All except TBC
were found to show strong correlations. The lack of multicolin-
earity is not a specified assumption of the discriminant model,
but it may have important consequences for the interpretations
of the canonical functions (McGarigal et al., 2000; Quinn and
Keough, 2002). Therefore all variables involved in high pair-
wise correlations (7 > 0.7) were subject to a univariate, one-way
ANOVA with the grouping variable as the main effect. For each
pair of highly correlated variables with significant among-group
differences, the variable retained was the one with the greatest
among-group variance (or largest F-value). The others were
eliminated. The removal of one offending variable did not elim-
inate other pairwise correlations, as sometimes is the case
(McGarical et al., 2000); therefore none was omitted from the
analysis. Box’s M test showed that covariances were not homo-
geneous (P < 0.001), therefore quadratic analyses were used.
Wilk’s values were calculated to produce a measure of the dis-
crimination power of each parameter. In all tests, values of
P < 0.05 were considered statistically significant. All tests were
performed in MINITAB version 14 (Minitab Inc., USA) and
SPSS for Windows version 12.

RESULTS

Out of 468 attempted recordings, 79 were empty
(missed recordings may be due to low intensity calls

or bats using visual cues for orientation), 78 were
discarded due to poor sound quality (low signal to
noise ratio or interference), 24 belonged to species
with too small a sample size to be included and 287
were used successfully in analysis. Sequences were
obtained from 29 species, though data from 25 were
used in guild classification and from 11 for species
classification analyses, again due to sample size
considerations (Table 1).

New Call Descriptions

The calls of 12 phyllostomid bat species are de-
scribed in this study for the first time (Fig. 1A-B,
Table 1 and Appendix).

Subfamily Stenodermatinae

1. Gervais’s fruit-eating bat (4. cinereus) emits short
(1.5 £ 0.5 ms) multiharmonic, steep frequency mod-
ulated (FM) calls of relatively high frequency peak
frequency (70.5 = 15.6 kHz), broad bandwidth and
high variability;

2. The great fruit-eating bat (4. lituratus) emits mul-
tiharmonic, FM calls of longer duration than
A.cinereus (2.3 £ 0.6 ms), and of lower peak fre-
quency (63.0 = 8.8 kHz). The calls have a broad
bandwidth and are very variable;

3. The little big-eyed bat (C. trinitatum), a fruit-eating
species, emits a short (1.4 £ 0.3 ms), FM, multihar-
monic call, with a peak frequency of 96.9 + 4.6 kHz;
4. The hairy big-eyed bat (C. villosum), a fruit-eat-
ing species, emits calls of similar shape (FM), dura-
tion (1.4 + 0.3 ms) to those produced by C. trinita-
tum but with a slightly lower peak frequency (91.8 £
5.8 kHz);

5. The tent-making bat (U. bilobatum), a fruit-eating
species, emits a multiharmonic FM call of short du-
ration (1.6 £ 0.4 ms) and high frequency (74.7 +
10.6 kHz);

6. Heller’s broad-nosed bat (P. helleri), a fruit-eating
species, also produces short (1.3 + 0.1 ms), high fre-
quency (99.0 £ 6.4 kHz) multiharmonic FM calls.

Subfamily Glossophaginae

A nectarivorous species, C. minor, emits short
(1.5 £ 0.4 ms), highly variable, high frequency (97.9
+23.3 kHz) FM sweeps.

Subfamily Phyllostominae

The yellow-throated bat (L. brachyotis), the
hairy big-eared bat (M. hirsuta), the little big-eared
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TABLE 1. Continued

Guild

n

FMAX (kHz)

% + SD
118.1 £8.6
110.3 +£5.1

FMIN (kHz)
% + SD

854 +6.1

FMAXE (kHz)

% + SD
99.0 + 6.4

DUR (ms)

IPI (ms)

Taxon

min—-max
101.1-131.0

106.0-116.0

min—max
76.0-92.0

min—-max
88.9-107.9
91.8-100.6

84.3-99.7

% +SD  min-max

min—-max
16.8-61.1

% + SD
30.7 +12.7
50.3 +26.5
57.7+242

GFHC
GFHC
GFHC

5
3
4

1.0-1.4

1.1-1.8

0.9-1.9

1.3+0.1
1.5+03
14+03

Platyrrhinus helleri

76.0 £10.4 64.0-83.0

96.9 + 4.6

19.8-68.0
41.0-103.9

Chiroderma trinitatum

C. villosum
Stunirinae

105.0-130.0

1129 £8.6

81.3+£2.9 78.0-87.0

91.8 £5.8

GFHC

5

92.8 £12.7 76.0-111.0

56.2+84 42.0-64.0

70.8+£9.0 55.8-79.0

1.1-2.7

28.8-49.0 1.9+0.7

344+8.5

Sturnira tildae

VESPERTILIONIDAE

Myotis nigricans

AlIC

4
2
4

61.3-78.0 51.3+1.3 50.0-53.0 125.0£7.5 115.0-133.0

40.1-45.0
48.2-57.7

66.2+7.9

19.5-33.1 22+0.1 2.0-23

50.5-56.8

24.0+6.2

AlIC

71.5+14.8 61.0-82.0

99.6 £6.5

30.5+£64 26.0-35.0

39.6 £3.9

41.1+1.3
524+3.7

1.84.1

2.1-3.8

3+1.6
2.8£0.6

74.7+£23.3

Eptesicus brasiliensis

Rhogeessa io

D. V. Pio, F. M. Clarke, 1. Mackie, and P. A. Racey

AlIC

95.0-111.0

33.0-42.0

17.1-81.7

38.4+£28.6

* — The calls of M. molossus described here are not typical ‘search phase calls’ and contain much steeper FM components than is usually reported for this species. This difference is likely due to the fact that

this species is normally recorded in large open spaces. In this case recordings were taken on forest trails

bat (M. megalotis), the white-bellied big-eared bat,
(M. minuta), and Niceforo’s big-eared bat (7. nice-
fori), are all small insectivorous species, but like
the rest of the Phyllostomidae recorded in this
study, emit multiharmonic FM sweeps characterised
by short durations (1.3 £ 0.1, 1.4 £ 0.7, 1.5 £ 0.4,
1.6 £ 0.2, 1.6 £ 0.1 ms, respectively), broad band-
widths and relatively high frequencies (74.6 £ 7.8,
80.8 £14.2,98.1 £15.6,61.2 £ 26, 75.3 + 1.8 kHz,
respectively).

Discriminant Function Analysis

Quadratic discriminant analysis was applied to
11 individual species and 25 species grouped togeth-
er according to guild classification.

Individual species

When using quadratic discriminant function
analysis for individual species classification, an over-
all classification of 68.8% was reached (Table 2).
The model included all five parameters: TBC, DUR,
FMAXE, FMIN and FMAX. Classification rates
ranged from 100% for R. naso, S. bilineata, M. mo-
lossus and P. parnellii to 29.2% for C. perspicillata.

MANOVA indicated significant discrimination
of the model (Wilk’s = 0.010, Fso, gs6 = 29.71,
P <0.001). The first discriminant function explained
80.1% of the variation, whilst the first three discrim-
inant functions combined accounted for 98.6%.
Though predictor variables were correlated, remov-
ing any one of the parameters could not increase ac-
curacy. When parameters were removed in turn,
overall accuracy decreased as follows: 64.9% (TBC
removed), 68.3% (DUR removed), 67.3% (FMAX
removed), 59.4% (FMAXE removed), and 55.4%
(FMIN removed).

Guilds

Quadratic discriminant analysis classified an
overall 65.8% of calls into the correct guild group-
ings (Table 3). Individual guild accuracy ranged
from 100% in open air and clutter adapted aerial in-
sectivores, to 43% in frugivores. This model includ-
ed all five parameters. A MANOVA indicated signif-
icant discrimination of the model (Wilk’s = 0.045,
F)s 1030= 53.88, P<0.001), that the first discriminant
function accounted for 91.1% of the variation,
whilst the first three discriminant functions com-
bined accounted for 99.6%. The overall model accu-
racy was not improved by removing any of the
variables, though equal classification accuracy was
obtained by removing FMAXE (65.9%). When
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removing all other variables, classification accuracy 5 3 3 g
decreased as follows: 60.6% (FMAX removed), ‘§ é § £ rlcoccccocoman onn
59.9% (DUR removed), 60.3% (TBC removed) and < £ = = - o=
57.1% (FMIN removed). R =
25 E g
DiscussioN é g § § >
§~§§ gE cCococaNS—~na @«

Quadratic discriminant function analysis for % . Q =
a community of 11 individual species of neotropical = = £ A
bats belonging to four families resulted in a classifi- G § § s
cation rate of 68.1%. This is lower than most other £ 2 £ Shlccocco~noo—— mow
published work. Russo and Jones (2002) obtained & - S E &~ - T
a classification rate of 81.8% in a model which com- 2 § g =
prised nineteen species of five families. Neotropical E &3 S
bat communities are very diverse, comprising in :‘::’ <8 2 Zloccococomo—omo ~ — =
excess of 50 species in just one habitat type (Hand- 5 & 5 S & - aee
ley et al., 1991), and the species considered here are  § L § ©
only a section of the community present. In total, % :e% g
49 species of bats have been recorded from the —57: % T o
VMFR and thus calls of the 29 species dealt with 0 j 2 ST cceeenamaTe A
here represent less than two-thirds of the communi- L‘i E8S] 3,
ty (Clarke et al., 2005a, 2005b; authors’ unpub- —E 2 § 2 >
lished data). The classification rate for a larger com- 2 - ) g) g
munity is likely to be lower, as increased number of 52 © 2 3% ccococce—t—aa oo n
species result in lower classification rates for DFA 3£~ |F|S& - aTe
(Biscardi et al., 2004). Aerial insectivorous spe- g_ﬁ _g =
cies such as S. bilineata, S. leptura, M. molossus and =2 ; ‘B =
P parnellii resulted in higher classification rates .g g 5 § Y ccccoacoccooo aos
(93.3-100%) than did gleaning frugivores and nec- £ & S §§ =
tarivores (27.9-75%). This result supports previous § = E &
research that found that bats emitting FM/QCF and ~ § £ %
FM/CF/FM calls are typically more accurately clas- é & S § -
sified than species emitting FM calls (Russo and 8 “; :ﬁ 2 ceexeceecee weg
Jones 2002), possibly because narrower bandwidths g 22 :
result in reduced frequency overlap. TES

These findings suggests that rapid biodiversity -2 & E s
assessments (RBAs) with time-expansion detectors 2 g % §§ et oo o oo e
alone would not provide an accurate and complete é gug :“ = - -
picture of the resident bat community, especially 3 §8
where members of the family Phyllostomidae are £§ g s
concerned. Inherent biases involved in using the g £ § g % °orocoococooocoo g
detector as a tool for RBAs include varying detec- § £ = & M -
tion levels due to varying intensities of echolocation g :é 2
signals emitted by different species (Waters and “‘é = 3 3
Jones, 1995). Even within the same guild, some bats £ Sy § glaecccoccocccos aag
were consistently easier to record than others. E 5 “ g2 -
Attempts to obtain recordings from A. jamaicensis é g S = . <
and A. lituratus always yielded data, whilst record- .2 é = 8 £33 = :§ $5%
ings from some of the smaller frugivorous or nec- £ £ i;q.f 2 % 2 §, R £ E
tarivorous species such as P. helleri, U. bilobatum, g B ;f £ 2 E § P §.§ % S § .
G. soricina and A. cinereus were often not success- & 2 3 & |38 §3 S g% S¢s -~ 52
ful. Moreover, in a recent study comparing sampling 2 2.5 % 8 |S8 §§ S23¢ 33855 §
methods in a Mediterranean bat community, using & & 2 & SSSL838853c 2
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TaBLE 3. Quadratic discriminant function analysis classification for six guilds of Neotropical bat species, based on habitat type, feeding mode and diet (Schnitzler and Kalko, 1998).

The guilds represented are aerial insectivores feeding in open spaces (AIOS; one species), aerial insectivores feeding in intermediate (or back-ground) clutter (AIIC; six species), aerial
insectivores feeding in highly cluttered habitats (AIHC; one species), gleaning insectivores feeding in highly cluttered habitats (GIHC; six species), frugivores (GFHC; nine species) and

nectarivores (GNHC; two species) which both feed in highly cluttered habitats. Overall classification rate was 65.8% (n = 287)

True groups

Gleaning insectivores  Gleaning frugivores Gleaning nectarivores

Aerial insectivores

Aerial insectivores

Aerial insectivores

DFA classified as

(high clutter)

(intermediate clutter) (high clutter) (high clutter) (high clutter)

(open space)

D. V. Pio, F. M. Clarke, 1. Mackie, and P. A. Racey

27

13
151

65

AIOS
AIIC
AIHC
GIHC
GFHC
GNHC

33
27

36
32

46

12
12
100

Total N

65

44

N correct

81.8

43

88.9

100

95.7

% correct

any one of three techniques (roost inspections, mist-
netting and acoustic sampling) resulted in either
under- or overrepresentation of certain groups of
species (Flaquer et al., 2007). We therefore recom-
mend the use of both acoustic and capture (mist-nets
and harp traps) techniques to survey the largest pos-
sible number of species in bat community studies.
This supports findings from previous research in the
Neotropics (Kalko and Handley, 2001; MacSwiney
et al., 2008).

Quadratic DFA classified 65.9% of calls from 25
species into the appropriate guild. Higher classifica-
tion rates were observed for aerial insectivores feed-
ing in high, intermediate and low levels of clutter,
whilst gleaning frugivores displayed the lowest at
46.1%. Again, this rate is low when compared to
other similar studies, where classification to the
genus level reached 95.7% (Vaughan et al., 1997;
Russo and Jones, 2002). It is possible that this result
may be due in part to the fact that the gleaning fru-
givores guild comprised a higher number of species
(9) and thus incorporated more variability than any
other guild.

There is ample evidence that Neotropical bats
partition resources by having specialised eco-
morphological adaptations. Fine-grained resource
partitioning based on differences in size and use of
foraging areas, as well as differences in activity
pattern and foraging strategies, are thought to play
key roles in structuring these species-rich communi-
ties, and facilitate long-term species co-existence
(Weinbeer and Kalko, 2004). There may be two
reasons for low classification rates for the Phyl-
lostomidae: (1) within this family overlap of guilds
in habitat preferences, flight characteristics and diet
are more extensive than previously appreciated or
(2) echolocation in the Phyllostomidae may not re-
flect fine-grained resource partitioning.

Several authors have reported considerable plas-
ticity in the foraging behaviour and habitat use with-
in the same species of bats (Fenton, 1989; Faure and
Barclay, 1994; Siemers et al., 2001). Siemers et al.
(2001) found that Myotis nigricans exploited both
open spaces and edge and gap habitats, adjusting its
signal to different constraints in different environ-
ments. A number of studies have found that some
species exhibit flexibility in their foraging behav-
iour, by using both gleaning and aerial insect capture
(Megaderma lyra — Marimuthu and Neuweiler,
1987; Rhinolophus ferrumequinum and R. hipposi-
deros — Jones and Rayner, 1989; Hipposideros ru-
ber — Bell and Fenton, 1984). The advantages of
displaying such behavioural plasticity may include
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adaptability to prey availability or successful
competition over species restricted to particular
habitats or feeding modes. In any case, these find-
ings suggest considerable niche overlap and are
a reminder that assigning species to strict guilds
may be misleading (Fenton, 1990; Faure and Barc-
lay, 1994).

It is also possible that, although shaped by eco-
logical requirements, echolocation may not reflect
some of the variables involved in guild division (i.e.,
foraging strategy, diet and clutter levels) in such
a way as to result in clear cut species classification
amongst guilds. Studies on bats foraging in closed
habitats for instance show that diet may have little
influence on echolocation as other senses (such as
olfaction, vision and hearing) may play important
roles in finding food (Tuttle and Ryan, 1981; Bell
1985). The low rate of classification for the Phyl-
lostomidae may thus be due to a combination of eco-
logical plasticity and lack of fine-grained resource
partitioning reflected in the echolocation design of
this family.

The echolocation calls of 12 species of phyllo-
stomid bats (4. cinereus, A. lituratus, C. trinitatum,
C. villosum, C. minor, L. brachyotis, M. hirsuta,
M. megalotis, M. minuta, T. nicefori, U. biloba-
tum and P. helleri) are described here for the first
time. Quadratic discriminant function analysis of
Neotropical forest bat echolocation calls resulted in
a relatively low classification rate (68.1% of calls
from 11 species and 65.9% of calls from 25 species
into the appropriate guild), suggesting that consider-
able niche overlap and a relatively loose relationship
between echolocation design and ecological special-
isation may exist for the Phyllostomidae in particu-
lar(which displayed the lowest classification rates in
the community). Bat detectors alone are therefore
not a reliable means of inventory for Neotropical
bat communities. We recommend that mist nets
and harp traps continue to be used in combination
with bat detectors to obtain more complete survey
results.
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APPENDIX

Power spectra of each echolocation call in Figure 1
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