I. Acoustics & Echolocation 101

Using echoes from the sound you produce to locate objects in your path

Why do animals (incl. humans) make sounds?

Bats : Navigate (avoid collision); Feed (collision is required!)

I. Acoustics & Echolocation 101

Animals which use echolocation include dolphins, porpoises, and toothed whales.

And some, but not all bats!

Old World Fruit Bats (Pteripodidae) don't use echolocation.

Using echoes from the sound you produce to locate objects in your path

I. Acoustics & Echolocation 101

Using echoes from the - sound you produce to locate objects in your path

Sound:

The propagation of pressure waves through a medium (e.g. air, water, soil)

I. Acoustics 101 - what is a "sound" wave

Frequency = # of cycles of pressure change Hertz (Hz) = I cycle per second

I. Acoustics 101 - what is a "sound" wave

Frequency = # of cycles of pressure change Hertz (Hz) = I cycle per second

I. Acoustics 101 - what is a "sound" wave

Frequency = # of cycles of pressure change

Hertz (Hz) = I cycle per second

Amplitude = height of wave / intensity / decibels (dB)

Time (seconds)

Quiet whisper

Threshold human hearing

(ref: 20.0 µPA)

- I. Acoustics 101
 - General Rules of Wave Propagation

- I. Lower frequency waves (sound) carry farther
- 2. Higher frequencies attenuate more quickly (i.e. the Sound Pressure Level (intensity / energy) decreases with distance)

- I. Acoustics 101
 - General Rules of Wave Propagation

- I. Lower frequency waves (sound) carry farther
- 2. Higher frequencies attenuate more quickly (i.e. the Sound Pressure Level (intensity / energy) decreases with distance)

Intensity halves with doubling of distance

- I. Acoustics 101
 - General Rules of Wave Propagation

- I. Lower frequency waves (sound) carry farther
- 2. Higher frequencies attenuate more quickly (i.e. the Sound Pressure Level (intensity / energy) decreases with distance)
- 3. Higher frequencies give better "resolution"

- I. Acoustics 101
 - General Rules of Wave Propagation

- I. Lower frequency waves (sound) carry farther
- 2. Higher frequencies attenuate mo the Sound Pressure Level (intensit decreases with distance)

3. Higher frequencies give better "resolution"

(e.g., like more pixels in an image)

- I. Acoustics 101
 - General Rules of Wave Propagation

- I. Lower frequency waves (sound) carry farther
- 2. Higher frequencies attenuate more quickly (i.e. the Sound Pressure Level (intensity / energy) decreases with distance)
- 3. Higher frequencies give better "resolution" λ 340 Hz = 100 cm λ 3,400 Hz (3.4 kHz) = 10 cm λ 34,000 Hz (34 kHz) = 1 cm

Or more detail because a higher-frequency wave has a shorter wavelength and covers a shorter distance in one cycle

I. Acoustics 101 SCENARIO: "I need a survey of bat foraging habitat" **SOLUTION:** Ultrasonic Bat detector! **PROBLEMS:** Advertise vs. Navigate **Rules of Wave Propagation** Q: What is the detection capability of a bat detector ? Q: How close do I need to be to detect a bat?

2015

200 kHz.

100 kHz

Humans Birds Dogs

Cats

Bats